Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Wiley Interdiscip Rev RNA ; 13(4): e1703, 2022 07.
Article in English | MEDLINE | ID: covidwho-2277282

ABSTRACT

The COVID-19 crisis and the development of the first approved mRNA vaccine have highlighted the power of RNA-based therapeutic strategies for the development of new medicines. Aside from RNA-vaccines, antisense oligonucleotides (ASOs) represent a new and very promising class of RNA-targeted therapy. Few drugs have already received approval from the Food and Drug Administration. Here, we underscored why and how ASOs hold the potential to change the therapeutic landscape to beat SARS-CoV-2 viral infections. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.


Subject(s)
COVID-19 Drug Treatment , Oligonucleotides, Antisense , Humans , Oligonucleotides , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , RNA , SARS-CoV-2 , United States , Vaccines, Synthetic , mRNA Vaccines
2.
Molecules ; 27(2)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1625662

ABSTRACT

Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.


Subject(s)
Drug Development/methods , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Animals , COVID-19/therapy , Drug Approval , Drug Design , Humans , Oligonucleotides, Antisense/therapeutic use , SARS-CoV-2/drug effects , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL